This study investigated the utility of using OCT to monitor SDF application over time. Twenty dentin blocks each with 5 windows were exposed to a demineralization solution to produce carious lesions. Treatment windows included sound, sound+SDF, lesion, lesion+SDF, lesion+SDF+SDF. Lesion depth, mean reflectivity over the lesion depth and optical penetration through the lesions were monitored with OCT for 12 weeks. OCT was able to show changes in the reflectivity and optical penetration in demineralized and sound dentin after SDF application over time. Such changes can potentially be monitored to determine if and when re-application of SDF is needed.
New imaging technologies are needed for the clinical assessment of lesions on root surfaces. It is not sufficient to simply detect caries lesions; methods are needed to assess lesion depth, structural composition and activity to determine if chemical intervention has the potential to be effective and if remineralization has occurred. Lesions were monitored using CP-OCT during lesion dehydration to assess the lesion structure and any shrinkage. Thermal imaging at 6-10 μm wavelengths and short wavelength-IR imaging at 1450-1750-nm were used to monitor thermal emission during lesion dehydration to assess lesion activity. Imaging probes were custom fabricated for clinical use. We present the first clinical results of a small feasibility study employing CP-OCT, thermal and SWIR imaging to assess lesion activity in vivo on thirty test subjects with suspected root caries lesions.
We developed a clinical probe capable of acquiring simultaneous short wavelength infrared (SWIR) reflectance and occlusal transillumination images of lesions on tooth proximal and occlusal surfaces to reduce the potential of false positives. The dual probe is 3D-printed and the imaging system uses a Ge-enhanced camera and fiber-optic light sources that use SWIR light at 1300-nm for occlusal transillumination and SWIR 1450-nm light for reflectance measurements. The purpose of this study was to test the performance of the probe on extracted teeth prior to commencing clinical studies. The dual probe was used to image extracted teeth with proximal and occlusal lesions. SWIR images of each tooth were compared with micro-CT images to assess performance.
New imaging methods are needed to assess the activity of caries lesions on tooth surfaces. Recent studies have shown that changes in the contrast of lesions during dehydration with air at SWIR wavelengths can be used to determine if lesions are active or arrested. In this study changes in the reflectance of caries lesions during dehydration with air was monitored at 1500-1750-nm on extracted teeth using an imaging system with an InGaAs camera, a light source and a 3D printed handpiece with an integrated air nozzle suitable for clinical use. Lesion structure was also assessed with optical coherence tomography and microCT for comparison. This small preclinical study demonstrated that a 3D printed appliance with integrated air for dehydration can be used to acquire SWIR dehydration curves similar to those acquired previously for benchtop imaging systems.
Selective removal of dental calculus with high precision is best accomplished using lasers operating at high pulse repetition rates focused to a small spot size to limit damage to sound tissues. Conventional flashlamp pumped Er:YAG lasers are poorly suited for this purpose, but new diode-pumped solid state (DPSS) Er:YAG lasers have become available operating at high pulse repetition rates. The purpose of this study was to determine if image-guided laser ablation can be used to selectively remove calculus from tooth surfaces with minimal damage to the underlying sound cementum and dentin. A DPSS Er:YAG laser system was used to selectively remove calculus from ten extracted teeth using sequential SWIR images at 1500-1750-nm. The selectivity of removal was assessed using digital microscopy and optical coherence tomography. Calculus was removed with minimal damage to the underlying sound cementum and dentin.
A major advantage of composite restoration materials is that they can be color matched to the tooth.
However, this presents a challenge when composites fail and they need to be replaced. Dentists typically
spend more time repairing and replacing composites than placing new restorations. We have shown in
previous studies that high-contrast images of composite can be acquired in occlusal transmission mode at
near-IR wavelengths coincident with higher water absorption. The purpose of this study was to determine if
similar high-contrast images can be acquired in reflectance mode at longer wavelengths where water
absorption is even higher. Extracted human teeth with existing composite restoration (n=14) were imaged at
wavelengths from 900-2300 using an extended range InGaAs camera. Our results indicate that NIR
wavelengths longer than 1400-nm coincident with higher water absorption yield the highest contrast between
dental composites and tooth structure in reflectance.
UV and IR lasers can be used to specifically target protein, water, and the mineral phase of dental hard
tissues to produce varying changes in surface morphology. In this study, we irradiated enamel and dentin
surfaces with various combinations of lasers operating at 0.355, 2.94, and 9.4 μm, exposed those surfaces
to topical fluoride, and subsequently evaluated the influence of these changes on surface morphology and
permeability. Digital microscopy and surface dehydration rate measurements were used to monitor changes
in the samples overtime. The surface morphology and permeability (dehydration rate) varied markedly with
the different laser treatments on enamel. On dentin, fluoride was most effective in reducing the
permeability.
Selective removal of dental composite with high precision is best accomplished using lasers operating at
high pulse repetition rates focused to a small spot size. Conventional flash-lamp pumped Er:YAG lasers
are poorly suited for this purpose, but new diode-pumped Er:YAG lasers have become available operating
at high pulse repetition rates. The purpose of this study was to compare the ablation rates and selectivity of
enamel and composite for a 30 W diode-pumped Er:YAG laser operating with a pulse duration of 30-50-μs
and evaluate it's suitability for the selective removal of composite from tooth surfaces. The depth of
ablation and changes in surface morphology were assessed using digital microscopy. The fluence range
of 30-50 J/cm2 appeared optimal for the removal of composite, and damage to sound enamel was limited to
less than 100-μm after the removal of composite as thick as 700-800-μm. Future studies will focus on the
use of methods of feedback to further increase selectivity.
One major advantage of composite restoration materials is that they can be color matched to the
tooth. However, this presents a challenge when composites fail and they need to be replaced. Dentists
typically spend more time repairing and replacing composites than placing new restorations. Previous
studies have shown that near-infrared imaging can be used to distinguish between sound enamel and decay
due to the differences in light scattering. The purpose of this study was to use a similar approach and
exploit differences in light scattering to attain high contrast between composite and tooth structure.
Extracted human teeth with composites (n=16) were imaged in occlusal transmission mode at wavelengths
of 1300-nm, 1460-nm and 1550-nm using an InGaAs image sensor with a tungsten halogen light source
with spectral filters. All samples were also imaged in the visible range using a high definition 3D digital
microscope. Our results indicate that NIR wavelengths at 1460-nm and 1550-nm, coincident with higher
water absorption yield the highest contrast between dental composites and tooth structure.
Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these
wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We
hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with
suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth
were also examined with optical coherence tomography to confirm the existence of suspected cracks.
Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In
addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and
propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging
at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation
in the tooth aiding in crack identification and assessment of depth and severity.
In vivo and in vitro studies have shown that high contrast images of tooth demineralization can be acquired in the near-IR due to the high transparency of dental enamel. The purpose of this study is to compare the lesion contrast in reflectance at near-IR wavelengths coincident with high water absorption with those in the visible, the near-IR at 1300-nm and with fluorescence measurements for early lesions in occlusal surfaces. Twenty-four human molars were used in this in vitro study. Teeth were painted with an acidresistant varnish, leaving a 4×4 mm window in the occlusal surface of each tooth exposed for demineralization. Artificial lesions were produced in the exposed windows after 1 and 2-day exposure to a demineralizing solution at pH 4.5. Lesions were imaged using NIR reflectance at 3 wavelengths, 1310, 1460 and 1600-nm using a high definition InGaAs camera. Visible light reflectance, and fluorescence with 405-nm excitation and detection at wavelengths greater than 500-nm were also used to acquire images for comparison. Crossed polarizers were used for reflectance measurements to reduce interference from specular reflectance. The contrast of both the 24 hr and 48 hr lesions were significantly higher (P<0.05) for NIR reflectance imaging at 1460-nm and 1600-nm than it was for NIR reflectance imaging at 1300-nm, visible reflectance imaging, and fluorescence. The results of this study suggest that NIR reflectance measurements at longer near-IR wavelengths coincident with higher water absorption are better suited for imaging early caries lesions.
Near-IR (NIR) imaging can be used to view the formation of ablation craters during laser ablation since the enamel of the tooth is almost completely transparent near 1310-nm1. Laser ablation craters can be monitored under varying irradiation conditions to assess peripheral thermal and transient-stress induced damage, measure the rate and efficiency of ablation and provide insight into the ablation mechanism. There are fundamental differences in the mechanism of enamel ablation using erbium lasers versus carbon dioxide laser systems due to the nature of the primary absorber and it is necessary to have water present on the tooth surface for efficient ablation at erbium laser wavelengths. In this study, sound human tooth sections of approximately 2-3-mm thickness were irradiated by free running and Q-switched Er:YAG & Er:YSGG lasers under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with a band-pass filter centered at 1310-nm combined with an InGaAs area camera with a NIR zoom microscope. Obvious differences in the crater evolution were observed between CO2 and erbium lasers. Ablation stalled after a few laser pulses without a water spray as anticipated. Efficient ablation was re-initiated by resuming the water spray. Micro-fractures were continuously produced apparently driven along prism lines during multi-pulse ablation. These fractures or fissures appeared to merge together as the crater evolved to form the leading edge of the ablation crater. These observations support the proposed thermo-mechanical mechanisms of erbium laser involving the strong mechanical forces generated by selective absorption by water.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.