Microelectromechanical system (MEMS)-based thermal emitter is a key component in an optical sensor to provide broadband emission at mid-infrared wavelengths, where a lot of molecules have their unique absorption profile. However, the thermal emission from a MEMS emitter is typically fixed at a specific spatial coordinate. In this work, a MEMS thermal emitter with piezoelectric actuation to realize active tuning is demonstrated. Thermal emission comes from a doped silicon layer acting as a resistive heater. Piezoelectric actuation is enabled by an aluminum nitride layer on a designed cantilever. The devices are fabricated on a complementary metal-oxide semiconductor (CMOS)-compatible process line. The fabricated thermal emitter at the tip of the cantilever generates broadband MIR thermal emission with spectrum peaked around 10 μm wavelength, and piezoelectric actuation with a displacement of more than 20 μm. The work paves the way towards self-adaptable MEMS directional emitter for various applications including chemical/gas sensing.
A thermal emitter fabricated on complementary metal-oxide-semiconductor (CMOS)-compatible facilities is a key component for low-cost mid-infrared gas sensing. While conventional thermal emitters have broad spectrum and wide emission angle, which limit the sensing performance. In this work, a microelectromechanical system (MEMS)-based thermal emitter with photonic crystal has been designed and fabricated using CMOS-compatible technology. The photonic crystal enables the emission wavelength selectivity within mid-infrared regime. By engineering photonic crystal dimension, the emission enhancement wavelength can be matched to the fingerprint wavelength of chemical gas for efficient chemical gas sensing purpose.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.